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Analyzing two simple experimental situations we show that from Newton’s law of
gravitation and Special Relativity it follows that the motion of particle in an external
gravitational field can be described in terms of effective spatial fields which satisfy
Maxwell-like system of equations and propagate with the speed of light. The description
is adequate in a linear approximation in gravitational field and in a first-order inv2/c2.
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1. INTRODUCTION

In this paper we discuss how the gravitational interaction for an object with
nonzero velocities can be described in terms of effective spatial fields. Namely, we
will show that the force acting on a particle that moves in an external gravitational
field is given by the expression

EF = mEg+mEv × EB, (1)

where Eg is the gravitational field accounting for Newton’s gravitational law for
a particle at rest (see below (4)) and the effective fieldB, appearing due to the
Special Relativity effects like the magnetic field in electrodynamics, satisfies the
relation (below we assume thatEg-field is time independent)

curl EB = −η Eφ, i.e.
∮
EB dEl = −η

∫
Eφ d EA (2)

In (2) Eφ is the flow of the unit of mass per unit of time anddl anddAstand for the
line and area elements.
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We will show that

η = 4πGN

c2
, (3)

whereGN ≈ 6.66× 10−11 Nm2 kg−2 is a Newton’s constant andc is the speed of
light. The small value of 4πGN/c2 explains why, in contrast to their electromag-
netic counterparts, “gravimagnetic” effects caused byB are weak for moderate
values of masses and velocities.

We consider the case of a weak gravitational field and neglect higher powers of
v2/c2. In terms of General Relativity we would say that the curvature of space time
nearly vanishes, so that Special Relativity can be applied with accuracy 1− g00 '
1, g00being the 00 component of the metric tensorgµν . Wheng00¿ 1 the curvature
is almost zero, but nearly vanishing deviation from the flatness of space–time
still leads to noticeable acceleration, described with accuracyv2/c2 by Newton’s
gravitational law (Dirac, 1976; Landau and Lifshitz, 1962).

In Section 2 we consider twogedankenexperiments with the point particle
and mass flow. We will evaluateη comparing the result of the first experiment
with the expression (1) and then show that the results for the Experiment 2 are
described by (1) with the value ofη obtained from the analysis of Experiment 1.
We derive equations for the fieldsEg and EB that are similar to Maxwell’s equations
for the electromagnetic field.

In Section 3 we summarize our results and discuss the limitations of the
suggested approach.

The concept of spatial gravitational forces modelled after the electromagnetic
Lorentz force has a long history and many names associated with it (Bel, 1959;
Bonnor, 1995; Braginskyet al., 1977; Cataneo, 1958; Damouret al., 1991; Dunsby
et al., 1997; Holzmuller, 1870; Jantzenet al., 1990; Maartenset al., 1997; Mashoon
et al., 1997; Tisserand, 1872; Zel’manov, 1956). In this paper we consider spatial
gravitational fields in the most elementary way and show that even in such a
simplified scheme gravitational phenomena can be analyzed with the accuracy
o(v2/c2) without invoking equations of General Relativity.

2. EXPERIMENTS WITH POINT PARTICLE AND MASS FLOW
AND THE FIELD EQUATIONS

2.1. Description of Experiments

In this section we consider twogedankenexperiments: 1) point particle mov-
ing between two infinite pipes that carry a mass flow, and 2) one pipe, moving
toward the particle. We analyze these two experiments using only Special Rela-
tivity and Newton’s gravitational law

EF12 = GN
m1m2

r 3
12

Er 12 (4)



P1: GCR

International Journal of Theoretical Physics [ijtp] pp365-ijtp-366316 February 12, 2002 8:17 Style file version Nov. 19th, 1999

Gravitational Interaction Between Moving Objects 543

The set up for Experiment 1 is two infinite, straight, massless pipes on a
plane and a point particle between them. Each of the pipes is parallel to they axis,
crossing thex axis atx = ±b, and each carries a fuild that flows with velocityvf

relative to the pipe. The fluid in the left pipe moves in the positivey direction, the
fluid in the right pipe moves in the negativey direction. The linear density (we
neglect the pipe cross-section) of fluid at rest isσ . The particle with massm moves
alongy axis with the velocityvp = vf .

Let us calculate the net forceF acting on the particle in the frames of refer-
ence where particle is (momentarily) at rest—reference frame comoving with the
particle. In this frame of reference the particle lies between two continuous mass
flows with the linear densitiesσ andσγV whereγV is a Lorentz factor accounting
the relativistic length contraction

γV =
(

1− V2

c2

)−1/2

(5)

In (5), V = − 2vf

1+v2
f /c

2 is the velocity of a fluid from a right pipe in this frame of
reference. The forces exerted from the pipes have only anx components and the
straightforward calculation leads to the following expression for the force acting
on a particle in the frame where particle is at rest:

F = 2GNmσ

b
(γV − 1)≈ 4GNmσ

b

v2
f

c2
(6)

To obtain (6) we use expression (4), e.g. the force exerted from the left flow (second
term of (6)) is

FL = −
∫ +∞
−∞

dy
GNmσb

(b2+ y2)3/2
= −2GN

mσ

b
(7)

The magnitude of the force exerted from the right flow is given by (7) using
substitutionσ → σγV (since we consider infinite pipes there are no any boundary
effects caused by the endpoints of fluid) and the final result is the expression (6).

When the particle is at rest relative to the flow the net force is zero, as it
follows from (6). Below we will show thatB ∼ vf (see (10)) and that expression
(6) is reproduced by thev-dependent term of the Eq. (1).

In the second experiment, the particle with coordinates (x, y, z) is at rest
and the pipe oriented alongy axis moves toward the particle with the velocity
Ev = (−vp, 0, 0). The fluid with densityρ moves with the velocityEvf = (0,−vf , 0)
relative to the pipe.

We omit lengthy but straightforward calculations and report only the results
for Ea—the acceleration of the particle:

ax ≡ dvx

dt
≈ − 2GNσ x

(x2+ z2)

(
1+ v2

f

2c2

)
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ay ≡ dvy

dt
≈ 2GNσvpvfx

c2(x2+ z2)

az ≡ dvz

dt
≈ − 2GNσz

(x2+ z2)

(
1+ v2

p

2c2
+ v2

f

2c2

)
, (8)

wherex is γvp times the distance from the pipe to the particle in the reference
frame where particle is at rest. Expressions (8) are obtained by integration similar
to that (7) which is based on (4), taking into account the length contraction of a
small element of fluid with massρdy and neglecting higher orders ofv2/c2.

2.2. Evaluation ofη From the Results of Experiment 1

To obtain the value ofη, appearing in the relation (2) it is necessary to consider
the problem in a reference frame where particle has a nonzero velocity. The sim-
plest solution is provided by the original frame of reference described previously
when particle and the fluid from a left pipe move alongy axis with velocitiesvp

andvf correspondingly,vp = vf , and the fluid from the right pipe moves with the
velocity−vf .

From the symmetry arguments it follows that the net fieldEg is zero (particle
is between two sources with the same linear densitiesσγ ), so only the second
term of (1) contributes. According to (1) the force acting on the particle is directed
along x axis and its magnitude ismvpB. This expression already assumes that
EBEvf = EBEvp = 0, i.e. EB is perpendicular to the pipes just as the magnetic field given
by Ampere’s circuital law is perpendicular to the current (Landau and Lifshitz,
1962). In Experiment 1 we have∂ Eg/∂t = 0 (pipes are at rest), so we can use (2) to
calculate the value ofEB. Particle is at rest relative to the fluid in the left pipe, so it
“feels” fieldB generated only by the pipe from the right. Using the integral relation
(2) and for the relative velocityV = − 2vf

1+v2
f /c

2 we obtain

2πbB = −ησγV = ησ 2vf

1+ v2
f

c2

≈ 2ησvf , (9)

i.e.

B ≈ ησvf/πb (10)

and the force acting on a moving particle in the original reference frame will be
(taking into accountvp = vf ):

F = mvpB = ηmσv2
f

πb
(11)

In order to establish the value ofη we have to compareF andF—force calculated
in a two reference frames. Reference frames move relative to each other along
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y axis with velocity V and the force is directed alongx axis. Thus we need
Lorentz transformations in its vectorial form:

t ′ = γ
(

t − ( EV Er )

c2

)
; Er ′ = γ

(
γ−1Er − EV t + (1− γ−1)

( EV Er ) EV
V2

)
(12)

From (12) and the expression for the force

EF = d Ep
dt
= d(mγ Ev)

dt
= mγ Ea+mγ 3 (Ev Ea)Ev

c2
, (13)

it follows that up to orderv4/c4 (let us remind thatF itself is of orderv2/c2) we
haveF = F . Therefore, equating expressions forF andF we obtain

η = 4πGN

c2

(
1+ o

(
v2

c2

))
(14)

2.3. Description of Experiment 2 in Terms of~g and ~B
After the value ofη is established we demonstrate that the results for

Experiment 2 are described by (1). To do so, instead of straightforward but lengthy
arguments we assume that when∂ Eg/∂t 6= 0 (in the reference frame used to de-
scribe Experiment 2, the pipe has nonzero velocity, soEg is now time dependent)
expression (2) is modified as

curl EB = 1

c2

∂ Eg
∂t
− η Eφ, i.e.

∮
EB dEl =

∫ (
1

c2

∂ Eg
∂t
− η Eφ

)
d EA (15)

We will verify that (1) and (15) lead to the same expressions for the force as did
calculation using only Newton’s law and Special Relativity.

The components ofEB can be calculated from (15). ForEg we useEg = Ea with
Ea given by (8) whered Eg/dt = (d Eg/dx) · (dx/dt), and assume that fields vanish
at infinity. The choiceEg = Ea is justified since in the original frame of reference
particle is at rest and its (instantaneous) acceleration is defined by a “Eg term” of
(1). Usingη = 4πGN/c2, in a leading approximation inv2/c2 we obtain

Bx ≈ 2GNσvfz

c2(x2+ z2)

By ≈ − 2GNσvpz

c2(x2+ z2)

Bz ≈ − 2GNσvfx

c2(x2+ z2)
(16)

Now we are in a position to check that Experiment 2 can be described by
EF = mEg+mEv × EB.
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When the particle is at rest in the reference frame used to describe Exper-
iment 2, EF = mEg, which is trivially consistent with the Eq. (8), since we have
definedEg = Ea.

To account the effect caused by the “B-term” of (1), we consider the case
when particle in the original frame of reference moves with the nonzero velocity
Eu = (u, 0, 0). They component of (1) isFy = mgy −mBzu. Direct substitution
for Bz (andgy = ay) results in

Fy = m
2GNσvpvfx

c2(x2+ z2)
+mu

2GNσvfx

c2(x2+ z2)
(17)

To compare (17) with the expression calculated in the framework of Newtonian
approximation,Fy = may, we need the value ofay. From (8), acceleration in case
of Eu = 0, it follows that when a particle has nonzeroEu = (u, 0, 0), the value ofay

can be obtained by substitution ofvp+ u for vp in (8): vp→ vp+ u that leads to

Fy = may(vp→ vp+ u) = m
2GNσ (vp+ u)vfx

c2(x2+ z2)
(18)

As it is clear, (17) and (18) agree.
Next we consider thez component. Using (16) forBy we obtain

Fz = mgz+muBy = −m
2GNσz

x2+ z2

(
1+ v2

p

2c2
+ v2

f

2c2

)
−m

2GNσvpz

c2(x2+ z2)
u (19)

Since the particle moves with the velocityEu = (u, 0, 0) we haveaz = Fz/γum (see
(13)):

az ≈ −2GNσz

x2+ z2

(
1+ v2

p

2c2
+ v2

f

2c2
− u2

2c2

)
− 2GNσvpz

c2(x2+ z2)
u, (20)

whereγ−1
u ≡

√
1− u2/c2 ≈ 1− u2/2c2.

Now we have to compare this expression with the one foraz from (8), cal-
culated from Newton’s law and Special Relativity—acceleration of a particle in
the reference frame comoving with the particle. We replacevp→ vp+ u in the
expression (8) foraz to obtain

az(vp+ u) = −2GNσz

x2+ z2

(
1+ v2

p

2c2
+ v2

f

2c2
+ vpu

c2
+ u2

2c2

)
(21)

Expression (21) gives the acceleration of the particle in a reference frame moving
along thex axis with velocityvp+ u relative to the pipe. On the other hand,
expression (20) corresponds to the acceleration in the reference frame moving
along thex axis with velocityvp relative to the pipe. To compare (20) and (21),
we use (12) to transform acceleration from the reference frame used in (21) to that
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used in (20):az→ a′zγ
−2
u . This transformation introduces the term−u2/c2 so that

the two expressions for acceleration now agree.
A similar analysis for the case when the velocity of the particle is along the

y axis,Eu = (0, u, 0) again confirms that the expressionEF = mEg+mEv × EB can be
used to describe the motion of a particle in a gravitational field.

2.4. Equations for~g and ~B
Besides Eq. (15) that was postulated (and subsequently verified to describe

Experiment 2 in a self-consistent way) it is possible work out two more relations
for the fieldsEB and Eg.

First of all, from the expressions (16) it follows that∂Bx/∂x + ∂By/∂y+
∂Bz/∂z= 0, i.e.

div EB = 0 (22)

Next we compare curlEg and∂ EB/∂t . For they component we obtain

∂By

∂t
= ∂

∂t

(
− 2GNρvpz

c2(x2+ z2)

)
= 2GNρv2

p2zx

c2(x2+ z2)2
(23)

Straightforward calculation of they component of curlEg (as before, we takeEg = Ea,
for Ea see (8)) results in

∂gx

∂z
− ∂gz

∂x
= ∂

∂z

(
− 2GNρx

(x2+ z2)

(
1+ v2

f

2c2

))
− ∂

∂x

(
− 2GNρz

(x2+ z2)

)

≈ − 2GNρ2zx

(x2+ z2)2

v2
p

c2
, (24)

i.e. (curl Eg)y = −∂By/∂t .
Consideration of thex andz components show that the relation

curl Eg = −∂
EB
∂t

(25)

is valid. Also, from the definition ofEg we have divEg = 4πGNρ whereρ is a regular
three-dimensional density.

Summarizing, the equations forEg and EB are as follows:

div Eg = 4πGNρ , curl Eg = −∂ EB/∂t

div EB = 0, curl EB = 1

c2

∂ Eg
∂t
− 4πGN

c2
Ej (26)

whereρ is the mass density andEj is the mass density flow. In case of Experi-
ments 1 and 2Ej = Eφ = ρEvf .
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It is now straightforward to obtain the wave equations for the caseρ = 0,
Ej = 0

1

c2

∂2Eg
∂t2
= 52Eg,

1

c2

∂2 EB
∂t2
= 52 EB, (27)

i.e. free waves propagate with speed of light.

3. DISCUSSION

We have demonstrated that the gravitational force acting on a point particle
with massm and velocityEv is given by the expression

EF = mEg+mEv × EB (28)

with Eg and EB satisfying the system of equations similar to the Maxwell equations.
The approximation we used is that gravitational field is weak enough so that

space-time is approximately euclidean and the velocities are small enough so that
higher powers ofv2/c2 are negligible. In the framework of this approximation the
force obtained from Newton’s law (4) and the Special Relativity is described by
(28), i.e. motion of particle is given by an expression similar to the Lorentz force
for a charged particle in an external electromagnetic field. The similarity is caused
by neglecting the effects of self-interaction for gravitational field, corresponding
to a nonlinearity of Einstein’s equations. In case of classical electromagnetism the
linear approximation to field equations is well justified in a sense that phenomena
with characteristic action substantially exceedingh, h being the Planck’s constant,
are described by Maxwell’s and Lorentz’s equations (Landau and Lifshitz, 1962)
and in electromagnetic phenomena quantum effects manifest themselves earlier
than effects caused by a nonlinear corrections to Maxwell’s equations. Intuitively
it becomes clear when one compares electron’s Compton wave lengthrq = h/mc
and its classical electromagnetic radiusre = e2/mc2: from the value of the ratio
rq/re = hc/e2 ≈ 137 it follows that the quantum effects, namely the pair produc-
tion occurs at a distance that is 137 times more than the distance at which the
classical field singularities become relevant and when it becomes necessary to
modify classical theory, e.g. to introduce nonlinear terms in field equations.

Theory of gravity provides us with an opposite feature—“classical radius”
rg = 2GNm/c2 appearing in the Schwarzschild’s metric (Dirac, 1976; Landau
and Lifshitz, 1962) greatly exceeds Compton wavelength—rg/rq = 2m2/M2

Pl,
where the Planck massMPl ≈ 10−5 g. Therefore in describing the motion of bod-
ies with mÀ MPl it is vital to consider the exact classical equations of motion
(Einstein’s nonlinear equations)—quantum effects are negligible at this scale. The
self-interaction plays a decisive role in describing basic phenomena of light de-
flection or precession of perihelion of planetary motion (Dirac, 1976; Landau and
Lifshitz, 1962). This features of a motion in astaticgravitational field cannot be
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described by (28)—the “EB term” is absent for a static source. Therefore, fieldsEg
and EB, describing gravitational interaction of a moving object in a linear approxi-
mation, can be treated only as an effective fields and the limitation of our approach
manifests itself in degrees of freedom: 6 components ofEg and EB of course are not
enough to describe the degrees of freedom of a gravitational field.

Despite that the relevancy of the linear approximation is questionable, ap-
proximation (28) can be still useful for describing interaction of moving bodies:
from General Relativity it follows that the exact expression for the force exerted on
point particle moving in an external stationary field is given by expression similar
to (28) (Landau and Lifshitz, 1962):

EF = −mc2 E5 ln
√−g00+mc

√−g00Ev × curl EG, (29)

whereGα ≡ −gα0/g00, α stands for a spatial part of metric andgµν is a metric
tensor. Wheng00 = −1− 28/c2, where8 is a scalar potential,8/c2¿ 1, the
first terms of the r.h.s. of (29) is the same as the first term of the r.h.s. of (28). To
reproduce the second term of (28) which includes the fieldEB, that is to expressEB
in terms ofgµν it would be necessary to solve Einstein’s equations. At the moment,
we know of no solutions for the Einstein’s equations for Experiments 1 and 2, but
based on our phenomenological consideration we believe that the equation similar
to (28) can be derived from the equations of General Relativity.

Let us note that though fieldsEg and EB satisfy wave equations (27), they do
not transform as an antisymmetric tensor of rank 2, i.e. they do not transform
as the electromagnetic fieldFµν ∼ ( EE, EH ). If one attempts to postulate that the
exactexpression for the force acting on a test particle is given by (28) or (29)
then it turns out that in order to maintain expression (28) fieldsEg and EB transform
like nontensor quantities (Dirac, 1976). This is the price one has to pay when
attempting to describe gravitational interaction in terms of six degrees of freedom.
The nontensor feature of transformation is most transparent from (29): identifying
Eg with the first term of r.h.s. of (29) it follows that atxµ→ xµ + ξµ(x) in the
expression for the transformedEg there arises extra term

δgi (x) = ∂

∂xi

(
gµ0

g00

∂ξµ

∂xµ

)
ln
√−g00, (30)

which cannot be compensated by the transformation of a “EB-term” of (29). There-
fore Eq. (28) cannot hold in any reference frame, foranyvelocities. In Einstein’s
equations extra terms similar to (30) are compensated by coordinate transforma-
tions of General Relativity and as a result, equations of gravitational field and the
requirement of general covariance form a self consistent mathematical scheme
(Dirac, 1976; Landau and Lifshitz, 1962).

In approximation used in this paper (linearized equations and lowest order in
v2/c2) fields Eg and EB transform asEE and EH . This statement is true only in lowest
order in v2/c2. Straightforward calculation shows that (8) and (16) transform
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exactly asEE and EH transform in the lowest order inv2/c2. Since the fieldsEg and EB
are defined in the framework of this approximation, the description based on (28)
and (26) is self-consistent in the linear approximation and up to higher orders
in v2/c2.

As we already have mentioned,Egand EB are effective fields, even from the point
of view of classical theory. Nevertheless, Eq. (28) can be applied to a rather wide
class of phenomena in problem of describing the motion in external gravitational
field after the fieldsEg and EB are known. The advantage of using (28) and (26) is in
their simplicity in comparison with the problem of solving equations of General
Relativity.
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